
Don Malin's 

Cross Ref ere nee 
Program 

by Crescent Software 





Don Malin' s Cross Reference Program 

Program and documentation by Don Malin 
contents Copyright (c) 1990 Don Malin and Crescent Software, Inc. 





TABLE OF CONTENTS 

Requirements 

I. Introduction ................................. 2 

What the Program Does . . . . . . . . . . . . . . . . . . . . 3 
How it Works ............................ 5 
Installation ............................. . 
Required Files 

6 
8 

2. Program Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 

Operation Overview . . . . . . . . . . . . . . . . . . . . . . 10 
Command Line Arguments . . . . . . . . . . . . . . . . . . 11 
Using the Pulldown Menus . . . . . . . . . . . . . . . . . 11 
Using the Dialog Boxes . . . . . . . . . . . . . . . . . . . . 15 
Program Objects and Their Types . . . . . . . . . . . . . 18 

3. Specifying Options . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 

Choosing Source Files . . . . . . . . . . . . . . . . . . . . . 20 
Opening a Program Source File . . . . . . . . . . . . . . 20 
Loading an object database . . . . . . . . . . . . . . . . . 21 
Specifying File Extensions . . . . . . . . . . . . . . . . . . 21 

Global Report Options . . . . . . . . . . . . . . . . . . . . . 22 
Displaying Source when Reading . . . . . . . 22 
Using Graphics Characters in Reports . . . . 23 
Line Numbering Conventions . . . . . . . . . . 23 



Selecting Reports . . . . . . . . . . . . . . . . . . . . . . . . . 24 
Source Listings . . . . . . . . . . . . . . . . . . . . 24 
Extracting Source Text . . . . . . . . . . . . . . . 26 
Procedure Tree Diagrams . . . . . . . . . . . . . 27 
Object Summary Reports . . . . . . . . . . . . . 28 
Object Cross Reference Reports . . . . . . . . . 29 
Reporting Unused Objects . . . . . . . . . . . . 29 
Listing Objects by Procedure . . . . . . . . . . 30 
Listing Objects External to a Range . . . . . . 32 

Output Options . . . . . . . . . . . . . . . . . . . . . . . . . 33 
Sending Reports to a File . . . . . . . . . . . . . 33 
Sending Reports to a Printer . . . . . . . . . . . 33 
Printer Setup . . . . . . . . . . . . . . . . . . . . . . 34 

Saving and Retrieving Configuration Files . . . . . . . 36 

4. Running Reports . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 

Browsing Report Files . . . . . . . . . . . . . . . . . . . . . 37 
Invoking a DOS Shell . . . . . . . . . . . . . . . . . . . . . 37 
Leaving the Program . . . . . . . . . . . . . . . . . . . . . . 37 

5. Program Limits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 

6. How-to Tips and Tricks . . . . . . . . . . . . . . . . . . . . . . . . 38 

7. About the Program's Source Code ................ 46 

Appendix A - Error Messages . . . . . . . . . . . . . . . . . . . . . . 50 

Appendix B - Imbedded Metacommands . . . . . . . . . . . . . . 56 

Appendix C - Source Text Extracting and Merging Utilities 60 



Don Malin's Cross Reference Program 

REQUIREMENI'S 

This cross reference program is intended for use on an IBM PC, XT, 
AT, PS2 or 100% compatible computer running DOS 3.0 or later. At 
least 512K of memory is required, however 640K of DOS memory and 
at least 64k of expanded memory is recommended for optimum 
performance and data space. 

The program can track up to 2,425 program objects (procedures, labels, 
constants, and variables) and up to 32,766 separate references if 640K 
of memory is available. If your system has less memory, the program 
will be able to handle fewer objects and references. 

In order to leave as much memory as possible for object tables, the 
program uses code overlays. If you have at least 64k of expanded 
memory, the program will swap overlays from memory. If EMS 
memory is not available, overlaid code is swapped from disk thus 
slowing it's operation somewhat. 

If you intend to modify the source code for the XREF.EXE program 
and recompile it, you will need Microsoft QuickBASIC 4.00b or later 
(BASIC 7, PDS is recommended) and Crescent Software's QuickPak 
Professional version 3.0 or later. 

Page I 



Don Malin's Cross Reference Program 

1. INlRODUCTION 

Welcome to Don Malin's Cross-Reference program (XREF). We have 
made every effort to make this product the most comprehensive 
source code analysis tool available for BASIC programmers. You can 
now track program elements (objects) over an entire multi-module 
program, find objects that are defined but never used, and create 
formatted reports to fully document your program. If you have ever 
had to modify someone else's program or a program you haven't 
worked on in a Jong time, you will appreciate the clarity of these 
reports. 

We sincerely hope that you find XREF both useful and informative. 
If you have a comment, a complaint, or perhaps a suggestion for 
another QuickBASIC-related product, please let us know. We want to 
be your favorite software company. 

Before we begin discussing the contents of the XREF disk and 
manual, please take a few moments to fill out the enclosed registration 
card. Doing this entitles you to free technical support by phone, as 
well as ensuring that you are notified of possible enhancements and 
new products. Many upgrades are offered at little or no cost, but we 
can't tell you about them unless we know who you are! Note, 
however, that if you purchased XREF directly from us, the mail-in 
portion of the registration card may have been removed. In this case, 
you are already registered. We have done this both for your 
convenience and for ours. 

Also, please mark the XREF product serial number on your disk label 
or manual cover. License agreements and registration forms have an 
irritating way of becoming Jost, and doing this will insure that the 
number is handy if you need to contact us. You may also want to 
note the product version number in a convenient location; this is 
stored on the distribution disk in the volume label. If you ever have 
occasion to call us for assistance, we will need to know your serial 
number, and probably the version you are using as well. 

Page 2 



Don Malin's Cross Reference Program 

To determine the version number for any Crescent Software product, 
simply use the DOS VOL command, which will display the disk 
volume label: 

VOL A: 
Volume in drive A is XREF Vl.00 

We are constantly improving all of our products, and you may want 
to call us periodically and ask for the current version number. Major 
upgrades are always announced, however minor additions or fixes are 
generally not If you are having any problems at all -- even if you 
are sure it is not caused by one of our products -- please call us. We 
support all versions of QuickBASIC, and can often provide better 
assistance than Microsoft. 

WHAT 1HE PROGRAM DOES 

XREF uses pulldown menus and dialog boxes throughout, to make it's 
operation as easy and intuitive as possible, while allowing the user to 
tailor it's functionality. 

The program and this documentation often refers to program objects. 
This term refers to any distinct program element such as BASIC 
keywords, procedure names, line labels, constants, and variables. 

The XREF.EXE program can be used to read and analyze any 
Microsoft BASIC (BASICA, GWBASIC, or QuickBASIC) program. 
Several report types can be generated such as formatted source listings 
and sorted lists of program elements and their usages. All reports can 
be sent to either a printer or a disk file. Unlike other cross-reference 
utilities you may have seen that merely list your variables, XREF 
provides a complete report on all aspects of your program. 

Page 3 



Don Malin's Cross Reference Program 

Source listings may be generated with headers and line numbers for 
reference with other reports. If specified, procedures can also be 
printed on separate pages, and their page numbers will be listed in 
the table of contents that is automatically generated for all reports. 
Listings will include all modules listed in your program's .MAK file 
including all '$INCLUDE files encountered. 

Quoted strings and comments may also be extracted to a file which 
can be run through any spell checking program. A separate utility is 
provided to merge the corrected text back into the source file. Since 
most spell checkers don't understand BASIC program statements and 
variable names, this feature could save programmers great 
embarrassment. 

A Procedure Tree diagram may be generated showing the calling 
relationships between all SUBs and FUNCTIONs in your entire 
program. This feature will help you visualize the overall structure of 
a modular program. 

Object summary reports may be created showing all distinct object 
names, and the number of times each is used. This type of report will 
help you find objects that are infrequently used and could possibly be 
eliminated. 

You may generate a cross reference table that shows where all 
specified objects are used in your program. This report shows not 
only the reference line numbers, but also where assignments were 
made and what procedures they occurred in. This kind of report is 
invaluable since it allows you to see the scope of your variables, and 
avoid subtle bugs caused by variables that are referenced but were 
never assigned or vice versa. 

Page 4 



Don Malin's Cross Reference Program 

Probably the most important report is one that lists all objects that are 
not used in your program. This will help you easily find mistyped 
variable names, unreferenced line labels, as well as procedures that are 
never used. One of the great features of BASIC is that you don't 
have to declare variables before you use them. While this is a great 
help when writing code, the compiler does not generate any warning 
when a variable is misspelled or unreferenced. This type of bug can 
lead to subtle problems that are extremely difficult to identify and 
locate. By providing an alphabetized listing of all unused variables, 
you can quickly spot any that are misspelled. 

Another report lists all objects that are used within procedures, 
including their type and information about their scope. (A variable's 
scope means if it is private to a procedure, shared among several 
subprograms and functions, or common across an entire application.) 
This report can help you identify automatic variables (stack variables 
that are created when the procedure is called) and static variables. 
This will help you weigh the trade-off between speed and memory 
usage for a given procedures. 

The last report type lists all variables that are used within a range of 
line numbers, but are also used outside that range. If you have ever 
wanted to take a section of code and move it into a sub program but 
where afraid that you would forget to also include related variables, 
this report will remove all of the guess work. 

HOW IT WORKS 

The cross-reference program uses pulldown menus and dialog boxes 
to set the various options for its reports. After a BASIC source file 
and one or more report types have been selected, the program will 
read the entire source file as well as all associated files listed in the 
program's .MAK file. As the files are being read, the program parses 
individual objects, and saves them into several tables containing 
information about their type and usage. If specified, a formatted 
source listing will also be generated at this time. 

Page 5 



Don Malin's Cross Reference Program 

After a source program has been read, all of the information about 
each object will be saved to a file with the same base name as the 
source file but with a different extension. The default extension is 
.ODB (Object Data Base), however any extension may be specified if 
you prefer. This file can later be used for other reports, without 
requiring the entire source file to be read again. The cross-reference 
program and this documentation refers to these files as Object 
Databases. 

Once the files have been read, the objects are sorted and the selected 
reports are generated. If you specify that reports are sent to disk, you 
may browse through the resulting files with the built in file viewing 
feature. 

INSTALLATION 

To install the cross reference program on your hard disk, create a 
directory and log onto it. Then run the INSTALL program from the 
distribution disk. For example, to install the files in a directory called 
"\XREF" on drive "C:" type the following: 

C:\ > MD \XREF 
C:\ > CD \XREF 
C:\XREF> A: INSTALL 

Use the same method to install the source files, for example: 

C:\> MD \XREF\SOURCE 
C:\> CD \XREF\SOURCE 
C:\XREF\SOURCE > A: SOURCE 

Page 6 



Don Malin's Cross Reference Program 

If an error occurs during installation you should copy the distribution 
files directly to the drive and directory and then type: 

INSTALL 

If you are installing or reinstalling an upgraded version of the 
software, you may want to include one of the following switches in 
the examples above: 

-n Install newer files only 
-o Overwrite existing files 

If -o is not given, you will be prompted to overwrite each file that 
exists in your drive and or directory. 

Page 7 



Don Malin's Cross Reference Program 

REQUIRED FILES 

After installation, the following files will be placed on your disk: 

File Name 

README 

XREF.EXE 

XREF.KEY 

TEXTIN.COM 
TEXTOUT.COM 
LINESOUT.COM 

BASIC Source Files: 

XREF.BAS 

XREFDIAL.BAS 

XREFMISC.BAS 

XREFRPT.BAS 
QMAP.BAS 

DIALOG.BAS 
GETFILE.BAS 

DIALTYPE.BI 
XREFTYPE.BI 
XREFCOMM.BI 

If present, contains updated 
information about the program. 
The executable version of the cross 
reference program. 
Support file containing a table of 
BASIC keywords and other information 
used by XREF.EXE. 
Text merging program. 
Text extracting program. 
Line number removal program. 

Source for the cross reference 
program's main module. 
Source for the dialog box control 
module. 
Source for miscellaneous support 
routines. 
Source for the reporting module. 
Source for the reading and parsing 
module. 
Source for the dialog box module. 
Source for the file dialog box 
module. 

Type definition for dialog boxes. 
Type definitions for XREF. 
Defines common arrays used in XREF. 

Page 8 



Don Malin's Cross Reference Program 

XREF. MAKE or NMAKE description file for 
recompiling and linking the XREF 
program and its associated modules 
and libraries. 

XREF.MAK Lists required modules for XREF. 
XREF.RSP LINK response file for linking XREF. 

XREFMISC.LIB Library of miscellaneous routines 
used by XREF. 

VIEWFILE. OBJ File browsing module . 

TEXTIN.BAS Source for TEXTIN.COM, the text 
merging program. 

TEXTOUT.BAS Source for TEXTOUT.COM, the text 
extraction program. 

LINESOUT.BAS Source for LINESOUT.COM, the line 
number removal program. 

MAKEKEYS.BAS A program that creates the XREF.KEY 
file. 

KEYWORDS.BI Include file containing keyword 
information for MAKEKEYS.BAS. 

Note that XREF.EXE and XREF.KEY are the only files which are 
required to run the cross-reference program, and they must be kept in 
the same drive and directory. 

If you intend to recompile XREF, you will also need the following 
files from Crescent Software's QuickPak Professional version 3.00 or 
later. 

PULLDNMS.BAS 
PRO.LIB 

Page 9 



Don Malin's Cross Reference Program 

Notice that TEXTIN, TEXTOUT, and LINESOUT were linked using 
our P.D.Q. product. If you intend to recompile these utilities, the 
resulting .EXE files will be much larger when regular QuickBASIC is 
used. 

2. PROGRAM OPERATION 

This chapter contains information about the operation of the 
XREF.EXE program. 

OPERATION OVERVIEW 

The usual sequence of events involved in using this program are as 
follows: 

1. Start the program from DOS, either with or without 
command line arguments. (These arguments are described 
below.) 

2. Select a program source file to examine, or a previously 
saved object database file. 

3. Select the types of reports you want to generate. 

4. Select the destination of the reports, either to a file or a 
printer. 

5. Start the reporting process. 

6. If you are reporting to a file, you may browse the file. 

After you have made selections for the various reports and configured 
the program, you can save the current default settings to a disk file. 
This will eliminate having to re-configure the program each time you 
run it again later. 

Page IO 



Don Malin's Cross Reference Program 

COMMAND LINE ARGUMENI'S 

When you start the XREF program from DOS, the following options 
may be given: 

XREF filename[.bas], GFXFile[.cfx] [/b][;] 

Filename is the name of the source file to process. The extension is 
optional and will default to ".BAS". 

CFXFile is the name of a previously saved configuration file. The 
extension is optional and will default to ".CFX". 

/b is an optional command switch which will force monochrome colors 
for all displays. 

A semicolon (;) may be used to terminate a line, and it also causes the 
program to immediately start processing the source file (if given) with 
the current settings and defaults. If the semicolon is omitted, the 
menu will be displayed as usual. (Note: Any parameter may be 
omitted, but the CFXFile must always be specified after the comma.) 

Please understand that command line arguments are strictly optional, 
since all parameters can be selected from within the program except 
/b. 

USING TIIE PULLDOWN MENUS 

XREF's user interface is based on a comprehensive system of 
pulldown menus and dialog boxes. The menu system organizes the 
major settings categories as menu titles and pulldown subtitles. 
Dialog boxes query the user for additional information for certain 
categories. 

Page 11 



Don Malin's Cross Reference Program 

11111!11 Report Output Hun 

li·m+ilhlPIMAI 
Load Object Detabase .. . 
Browse Report FIie .. . 

Specify File ExtcnsJons ... 

Su,e Settings to File .. . 
\'. Retrleue Settings Fl le .. . 

·· DDS Shell 

Exit 

Displays soorcc files to be opened and processed. 

Figure 1 

Figure I depicts XREF's introductory display with an active menu 
system. (The pulldown menu system is active whenever a menu is 
pulled down.) On the first line of the screen appears the menu bar, 
and under each menu bar option there is a unique pulldown menu. 
All of the options that are available in the program may be accessed 
through the menu system. 

Page 12 



Don Malin's Cross Reference Program 

The table below summarizes the pulldown menu features. These 
features are fully discussed beginning on page 20. 

PULLDOWN MENU FEATURES 

Menu Description 

File Specifies files to be loaded for processing or 
viewing. Allows you to specify default extensions 
for files created by the program, allows saving of 
settings to a file, executes a DOS Shell, and exits 
the XREF program. 

Report Allows you to specify global report options as well 
as individual report types and objects to be listed 
in them. 

Output Sets the destination for all reports as well as 
formatting information. 

Run Starts the reading and/or reporting process. 

The menu system reflects a user interface with which you are most 
likely already familiar. Very much like QuickBASIC's own menu 
systt:m, XREF's menus may be used with either the keyboard or a 
mouse. 

The keyboard interface to the menu system is very extensive. In 
general, the direction keys are used to select a menu and a pulldown 
choice. 

When XREF begins it presents the File pulldown menu depicted in 
Figure 1. At this point you may scan across the menu bar by using 
the Left and Right-arrow direction keys. Once the desired menu 
(such as File) is selected, you may press the Up and Down-arrow keys 
until the desired selection is highlighted. 

Page 13 



Don Malin's Cross Reference Program 

Once a choice is highlighted, you may press Enter to select it. Some 
menu choices are indented, meaning they can be toggled on or off. 
To mark an indented choice as being either selected or unselected, 
press the space bar until a check mark appears or disappears. When a 
choice title is followed by three periods, it means that further 
information may be entered through an accompanying dialog box. 
Press Enter to call up the associated dialog box. 

Each active menu choice will have a highlighted letter in its title. 
Inactive choices are those that are inappropriate in certain situations. 
For example, it would be inappropriate to start the reading and 
reporting process until a source file has been chosen. In this case the 
choice within the Run menu will be displayed in a low intensity color 
with no letter highlighted. Menu·choices that do contain a 
highlighted letter can be selected by holding down the Alt key, and 
pressing the key corresponding to the highlighted letter. 

If you have a mouse, you may use it to control the menu system. 
You can move the mouse cursor over a menu item and press the left 
mouse button. This will cause the desired menu to be pulled down 
displaying all the choices available in that menu. To make a selection 
from a menu, move the mouse cursor to the desired choice and press 
the left mouse button. 

Some users prefer to "drag" the mouse. You may move the mouse 
cursor over the desired menu bar title and press and hold down the 
left mouse button. You may then select different pulldown menu 
commands simply by moving the mouse cursor along the pulldown 
menu. If the mouse button is released while the mouse cursor is over 
a choice, then that choice will be executed. You may also drag the 
mouse cursor along the menu bar to view other pulldown menus 
before making a selection. 

If you do not wish to make a selection after you have activated a 
menu, simply move the mouse cursor away from the menu and release 
the left mouse button. 

Page 14 



Don Malin's Cross Reference Program 

USING THE DTALOG BOXES 

A pulldown menu choice followed by ellipses ( ... ) usually generates 
a dialog box. Dialog boxes provide an effective way to gather 
information from the user and make it easy to enter information or 
select options. 

1111111 Report Output Run 

l!l 
~ File "--e: ffi~m•~l,!ilMIPS:l:lrl@i~=============== 
s 

s 
R 

1-41--1 
1-11-1 
1-D--1 
1-E-I 

nof loat.ba.s 
pc-talk. bas 
q111dp. bas 
text in.bas 
textout. bas 

cla:tecoap. bas tst. bas 
c1o ..... 11n.ho.s tstfield.bas 
f loot. has tstr It. bas 
llnesout.bas tstnybbl .bas 
Mkekeys. bas tstpower. bas 

xref .bas 
xrefdlel .bas 
xref• lsc. bas 
xref'rpt. bas 

Figure 2: The Open File dialog box 

Figure 2 depicts the Open File dialog box showing the three major 
dialog box input elements: the text box, list box, and command 
buttons. The text box accepts a string of characters from the 
keyboard, and allows the entry of a path and file name. The list box 
presents items in a columnar list, and shows all of the files that match 
the file specification shown in the text box above. List boxes may 
hold many items, and their contents can be scrolled by using the 
cursor direction keys. The command buttons then carry out the 
designated command when chosen. Pressing Alt-C using the example 
in Figure 2 above will cancel the dialog box. 

Page 15 



Don Malin's Cross Reference Program 

The table below presents a brief summary of XREF's dialog box input 
elements. These input elements, like the menu system, have both a 
keyboard and mouse interface. 

When a dialog box is first presented, the cursor will rest on a 
particular input element. This cursor, or input focus, may be moved 
to the next input element by pressing the Tab key, or moved to the 
previous input element by pressing Shift-Tab. The input focus may 
also be directed to a particular input element by pressing Alt plus the 
first letter of a dialog input element label. 

SUMMARY OF DIALOG BOX INPUT ELEMENTS 

Input Element Function 

Text box Collects text or numeric information from 
the keyboard. 

List box Presents a list of items usually arranged in 
columns. 

Check Box Allows an option to be turned on or off. 
'When a check box is selected a check mark 
appears inside it; otherwise the check box 
is empty. 

Command Button Executes the command on the command 
button label. Once a command button is 
highlighted, pressing Enter will execute it. 

Page 16 



Don Malin's Cross Reference Program 

Aside from these general directions, there are more specific ways of 
using each dialog box input element with the keyboard: 

• Text box 

The text box accepts text which is typed by the user, and it asks for 
specific information. When text is selected the entire string shown 
will be cleared when you begin typing. If you wish to edit the string 
without clearing it, you must use the left or right direction keys 
before typing . 

• List box 

List box items are selected with the direction keys. When the desired 
item is selected you may press Enter to accept it. 

• Check box 

The check box is toggled by pressing the space bar. 

• Command button 

You may execute the highlighted command button at any time by 
pressing Enter. You may also use Tab to get to a particular 
command button and press the space bar or Enter. Further, pressing 
Alt plus the first character of a command button will also execute it. 

If you have a mouse you may access dialog input elements by clicking 
on a desired element. More detailed instructions are summarized 
below. 

• Text 

The mouse is not useful for entering information into a text box. You 
may, however, direct the input focus to a text box by clicking on it. 

Page 17 



Don Malin's Cross Reference Program 

• List box 

A list box item may be selected by double clicking on it. Double 
clicking refers to pressing the left mouse button twice in rapid 
succession. If a list box contains more information, its contents may 
be scrolled by clicking the mouse on a border. 

,. Check box 

The check box is toggled by clicking on it with the mouse. 

• Command button 

You may execute a command button by clicking on it with the mouse. 

PROGRAM OBJECTS AND THEIR 1YPES 

The program and this documentation often uses the term Object to 
refer to distinct program elements. These elements are any of the 
following types: 

BASIC Key Words 

DEF FN Functions 

FUNCTIONs 

SUBprograms 

Labels 

Any BASIC key word or combination of 
keywords that forms a BASIC phrase such as 
INPUT or LINE INPUT. 

Any BASIC function name defined with the 
DEF FNname construct. 

Function procedure names. 

Subprogram procedure names. 

Line numbers or alpha-numeric line labels. 

Page 18 



Don Malin's Cross Reference Program 

CONSTants 

Simple Variables 

Numeric constants such as the number 1, or 
named constants such as CONST True = -1 
where True is a named constant. 

Any numeric or string variable that is not an 
array. 

Simple TYPE Variables An aggregate variable made up of elementary 
BASIC data types. The XREF program only 
reports references to the type name, not the 
individual elements. 

STATIC Arrays Arrays that are allocated by the compiler. 
STATIC arrays are defined with a DIM 
statement, and use constants for the subscripts. 

STATIC TYPE Arrays STATIC arrays of a TYPE structure. 

Dynamic Arrays Arrays that are allocated at run time. Dynamic 
arrays are defined with REDIM, or DIM with a 
variable for the subscripts. 

Dynamic TYPE Arrays Dynamic arrays of a TYPE structure. 

SPECIFYING OPTIONS 

Before XREF can begin, you must specify a file to operate on and at 
least one report or task to perform. You will probably also want to 
customize the program to meet your needs and personal preferences. 
To accomplish this you will use the menus and dialog boxes to specify 
files, reports, and options, and then save the options in a 
configuration file. The remainder of this chapter is devoted to the 
details of each program option. 

Page 19 



Don Malin's Cross Reference Program 

CHOOSING SOURCE FILES 

You must choose a source file to process before any operations can be 
performed. Two types of files may be used, as follows. The first type 
is any ASCII BASIC source file. If this type of file is selected, it will 
be read and parsed into it's individual objects, and then saved as an 
Object Database. The second type of source file is the Object 
Database that was created earlier from the BASIC source file. This 
type of file can be used for subsequent reporting, without having to 
reread the entire BASIC source file. 

OPENING A PROGRAM SOURCE FILE 

The first choice on the File menu is titled "Open Source File ... ". Use 
this choice to select a BASIC source file to be read and processed. 
After selecting this choice, a dialog box will appear showing a list of 
source files to choose from. You can either highlight the desired file 
name from the displayed menu, or type it manually. 

When "Start" is selected from the "Run" menu, the program will first 
search for an associated .MAK file with the same base name as the 
specified source file. If a .MAK file exists, the module names specified 
therein will also be read and processed. If no .MAK file is found, the 
program will process only the specified file. .MAK files are generated 
by QuickBASIC, and they simply contain a list of program modules 
that are associated with the main module. $INCLUDE files are also 
read and processed as they are encountered in the source program. 

Note that all modules must have been saved in "Text" format. 
QuickBASIC "Fast Load/Save" files cannot be processed. Also note 
that your programs must be syntactically correct. Programs that will 
not compile because of syntax or other errors cannot be processed 
properly. 

Page 20 



Don Malin's Cross Reference Program 

LOADING AN OBJECT DATABASE 

The second choice on the "File" menu titled "Load Object Database ... " 
is used to display a dialog box containing a list of existing object 
databases. Use this choice to specify that you want to use a 
previously created object database file instead of having the program 
read your source file. 

Object databases are generated each time a BASIC source file is read. 
They have the same base name as the BASIC source's main module, 
but with an .ODB extension. These files contain a list of program 
objects and information about their type and usage within the 
program. If you have not changed your program since the last time 
XREF was run, you can generate reports based on the object database 
instead of the actual source. This will be considerably faster than 
having XREF read through the entire program again. 

SPECIFYING FILE EXTENSIONS 

The "Specify File Extensions .. ." choice from the "File" menu allows you 
to change the default file extensions used for files created by XREF. 
If the default extensions conflict with those of your own, you can use 
this choice to change them. After selecting this menu choice, a dialog 
box will appear allowing you to fill in the following information. 

The first field in the dialog box is titled "Object Database Extension:". 
After a program has been read and analyzed, the information about all 
the objects in the program will be saved to a database with the same 
base name as the source file and the extension shown below. This 
makes it possible to run different reports without having to reread the 
entire program. If you don't want to save this information, enter 
.NUL in this field. As supplied, the default extension is .ODB. 

Page 21 



Don Malin's Cross Reference Program 

The second field is titled "File Output Extension:". When you specify 
that report output should go to a file instead of the printer, the 
output file will have the same base name as your source file but with 
the extension shown. As supplied, the default extension for output 
files is .XRF. Note that you can override the default file name for any 
report by using the dialog box under the "to File ... " choice on the 
"Output" menu. 

The last field is titled "Extract Source Text File Extension:". While a 
source file is being read, the program can extract all quoted strings 
and/or comments, and place them into a file with the same base name 
as the source file but with the extension shown. This feature can be 
used to check the spelling in your programs, since most word 
processors do not understand BASIC programs and key words. 
As supplied the default extension is ".SPL". 

GLOBAL REPORT OPTIONS 

You can specify certain options that apply to all reports, such as 
whether or not to display the source code as it is being read, or 
whether to use the IBM graphic characters in reports and line 
numbering conventions in reports. To specify these options, choose 
"Options" from the "Report" menu. After selecting this choice, a 
dialog box will be displayed allowing you to enter your preferences as 
described below. 

DISPLAYING SOURCE WHEN READING 

The first input element titled "Display Source When Reading" is a 
check-mark field. If you want to see the source displayed on the 
screen as it is being read and analyzed, check off this field. Note that 
not displaying source will allow XREF to read and analyze the 
program faster. 

Page 22 



Don Malin's Cross Reference Program 

USING GRAPHICS CHARACfERS IN REPORTS 

Selecting the input element titled "Use Graphics Characters in Reports" 
will cause all reports to include high-order ( > 128 ASCII) line 
characters for dividing lines, headers and tree diagrams. Some 
printers use a different extended character set than the one IBM uses 
for video and printing. If the field is left blank, conventional ASCII 
characters will be substituted which will work on any printer. 

LINE NUMBERING CONVENTIONS 

The field titled "Make Line Numbers Relative To:" is a list box 
containing three choices as follows: 

"No Line Numbers" specifies that line numbers should not be 
printed on source listing reports. Reference line numbers will be 
given relative to the beginning of the file for other reports. 

"Beginning of File" causes line numbers in all reports to be 
relative to the beginning of each source file (physical line 
numbers). 

"Procedures" specifies that line numbers shall be relative to 
procedures. Each subprogram or function will begin on line 1. 
Note that this is the same method used within the QuickBASIC 
environment. 

Most reports use line numbers to show where an object was used in a 
program. If you use the QuickBASIC environment for most of your 
editing, you should specify that line numbers be relative to 
procedures, since this is the way they are displayed on the bottom 
right comer of QuickBASIC screens. If you use any other editor you 
should probably specify one of the first two choices. 

Page 23 



Don Malin's Cross Reference Program 

SELECTING REPORTS 

The "Reports" menu allows you to select various report types to be 
performed when the source program or object database is read. To 
select a report type for processing, move the highlight bar to the 
desired item and press the space bar. This will toggle a check mark 
on or off. Checked reports will be included in the program's output. 
Note that any or all options can be selected. To view or change 
options for a report, press the Enter key to view and edit the 
associated dialog box. The following sections describe the various 
reports and their options. 

SOURCE LISTINGS 

Checking the menu choice titled "Source Listing .. ." causes all source 
code to be listed to the output device when the file is read. To 
specify this option on the pull down menu, press the space bar when 
this item is highlighted. If you press the Enter key, a dialog box will 
be displayed letting you specify the following information: 

The first field in the dialog box can be used to enter a page title for 
each page of the listing. The program will automatically include the 
source file name, date, and time in all page headers, so you don't 
need to include this information here. 

The second field is used to specify that all procedures will be listed 
beginning on separate pages. Press the space bar to toggle the check 
mark on or off. 

The third field, "Expand tab characters to:", allows you to specify the 
number of character positions for each Tab stop. As Tab characters 
are encountered in the source file, they will be expanded to the next 
Tab stop. As supplied this is set to 8, but you should set this to the 
same value selected in QuickBASIC or whatever editor you use. 

Page 24 



Don Malin's Cross Reference Progrsm 

BASIC metacommands can be used within your source file to override 
XREF's defaults, or to control the format of the listing. The supported 
metacommands are listed below and each is described in detail in 
Appendix B. 

TABLE OF SUPPORTED METACOMMANDS 

Metacommand 

$LINESIZE:n 

$UST 

$PAGE 

$PAGEIF:n 

$PAGESIZE:n 

$SKIP:n 

Tells XREF to change the maximum line 
width for the listing. 

Tums the listing of the source code on or 
off. 

Forces a new page in the listing. 

Skips to the next page if there are less than 
"n" printable lines left on the current page. 

Sets the number of physical lines per page 
in the source listing. 

Skips "n" printable lines, or to the end of 
the page, whichever comes first. 

$SUBTITLE:'xxx' Sets a subtitle for listing page headings. 

$TITLE:'xxx' Sets a title for listing page headings. 

Page 25 



Don Malin's Cross Reference Program 

Although source listing metacommands have been supported in all 
Microsoft BASIC compilers since BASCOM 1.0, they are no longer 
documented. Appendix B shows both the use and syntax for each 
metacommand listed above. 

EXIRACTING SOURCE TEXT 

Toggle the "Extract Source Text..." menu item on to specify that all 
quoted strings and/or comments should be written to a file when your 
source program is read. This feature makes it easy to check the 
spelling of all text used in a program. 

You can specify saving either quoted strings, remarks, or both. 
Extracted text will be written to individual files with the same base 
name as the source file, but with an extension of .SPL (or whatever 
was specified under "Specify File Extensions .. ."). Note that .SPL files 
will also be created for any $INCLUDE file that is encountered. If an 
$INCLUDE file has the same base name as a module name, the .SPL 
files may conflict. Note also that .SPL files contain line numbers to 
allow edited files to be merged back in with the TEXTIN.COM utility. 

See Appendix C which contains a description and instructions for the 
TEXTIN.COM and TEXTOUT.COM programs 

Page 26 



Don Malin's Cross Reference Program 

PROCEDURE TREE DIAGRAMS 

Select the "Procedure Tree .. ." menu choice to specify that a Procedure 
Tree report be generated. This report type will show all procedures 
and their dependencies in a tree format that is easy to view. 

Pressing Enter on this choice will display a dialog box allowing you 
to set the following options: 

Sort Procedures - Procedures can be sorted such that they appear 
alphabetically, and only once on any branch of the tree. If they are 
not sorted, they will appear in the order and frequency in which they 
were used. Press the space bar to toggle this selection. 

Show procedure detail only once - Procedures that call many other 
procedures and are in tum called many times can take up a great deal 
of room in a report. Check off this box to show the detail for each 
procedure only once in the report. 

Insert page breaks in report - Checking this field will cause page 
breaks and headings to be inserted within the tree diagram. 

Procedure Tree Diagrams are an ideal way to visualize the 
interrelationships of procedures within an entire program. 

Page 27 



Don Malin's Cross Reference Program 

OBJECT SUMMARY REPORTS 

The "Object Summary Report ... " choice tells the program to show all 
specified object types, with information about where they are defined 
and the number of times they are used. 

If you press Enter on this choice, a list of object types will be 
displayed from which you can choose the types of objects to be 
reported on. 

Object Summary reports can quickly show you all objects used within 
a program, along with their frequency of use. This type of report is 
very handy for finding variables that are infrequently used and could 
possibly be replaced with a common scratch variable, thus reducing 
the amount of near memory (DGROUP) used by your program. 

If you specify that BASIC key words are to be listed, you will be able 
to see all of the BASIC commands used within your program. BASIC 
key words that require floating point math routines will be flagged, 
allowing you to see if you are unnecessarily bringing in the floating 
point portion of the BCOM library. QuickBASIC 4.5 and BASIC 7 
PDS will exclude this code if your program doesn't use any floating 
point keywords. 

If you own Crescent Software's P.D.Q. package, you will also be able 
to see if your program is using any keywords that are not supported. 

Page 28 



Don Malin's Cross Reference Program 

OBJECT CROSS REFERENCE REPORTS 

The "Object Detail Report ... " choice indicates that a detailed cross 
reference report should be generated. This type of report lists all 
specified object types, along with where they exist in the program and 
where they are referenced. 

Each reference will be listed as a physical line number relative to 
either the beginning of the file or the beginning of the procedure it 
was used in, depending on what line numbering convention you 
specified in the "Options" dialog box. An equal sign ( =) will precede 
line numbers where variables are assigned. 

If you press Enter on this choice, a list of object types will be 
displayed from which you can choose the types of objects to be 
reported on. 

This report is very useful for showing both the range and scope of 
variables in your program. This will help you determine where 
variables are assigned, and where they are referenced throughout the 
entire program. SHARED and COMMON variables will be shown, 
along with the names of the modules and procedures they were used 
in. 

REPORTING UNUSED OBJECT'S 

One of the most important uses for a cross-reference program is to 
find objects that were defined but never used. This type of error can 
be caused by misspelling a variable's name, or by editing a section of 
code that formerly referred to it. 

Page 29 



Don Malin's Cross Reference Program 

Many languages require you to declare variables before you use them, 
however BASIC imposes no such restrictions. Although BASIC lets 
you write code more fluidly without interrupting your thought 
process, it doesn't check for misspelled or un-referenced objects. Once 
this type of bug has been introduced into a program, it can be very 
difficult to track down, and may cause unpredictable results. 

To find un-referenced objects, check off the "Unused Objects .. ." choice 
from the "Report" menu. When chosen, this report will list all 
selected objects that are declared or created but never used. 
Procedures that are declared but never used, and constants (except 
numeric constants) or variables that are referenced only once will also 
be listed. 

If you press Enter on this choice, a list of object types will be 
displayed from which you can choose the types of objects to be 
reported on. 

LISTING OBJECfS BY PROCEDURE 

Objects may be listed by procedure so that you can see all specified 
objects that are used within a main module, subprogram, or function. 
Choose the menu item titled "Objects Used in Procedures ... " from the 
"Report" menu to specify this type of report. 

If you press Enter on this choice, a list of object types will be 
displayed, from which you can choose the types of objects to be 
reported on. 

The report listing will show each procedure name followed by a list 
of all specified objects used within it. Variables will be listed along 
with an attribute word to the right of their names. The attributes are 
as follows. 

Page 30 



Attribute 

Static 

Automatic 

Parameter 

Shared 

Global 

Don Malin's Cross Reference Program 

TABLE OF VARIABLE ATIRIBUTES 

Description 

A local variable whose value will be retained 
between each invocation of the procedure it is 
contained in. Static variables are the default 
when a procedure is defined with the STA TIC 
key word at the end of the procedure 
definition line. 

A local variable whose value will be initialized 
on each invocation of the procedure it is 
contained in. This is the default when a 
procedure does not have the STATIC key word 
at the end of the parameter list. This type of 
variable requires more stack space and more 
instructions to be executed each time the 
procedure is called. The advantage of 
automatic variables, however, is that the space 
they occupy when a procedure is active is 
reclaimed on exit thus saving precious memory. 

A variable listed in the procedure's parameter 
list that it is contained in. 

A variable that is shared with the main module 
it is contained in. 

A variable that is shared throughout the 
module or program. 

Page 31 



Don Malin's Cross Reference Program 

This type of report can help you weigh the tradeoffs between static 
and dynamic (automatic) procedures, as well as see clearly what 
objects are being used in a procedure. 

LISTING OBJECfS EXTERNAL TO A RANGE 

If you have ever needed to break up a large procedure into separate 
subprograms, functions, or modules, then the "List Objects External to 
a Range ... " report will help you greatly. With this report you can 
specify a range of line numbers to examine, and the report will list all 
variables that are used within the range and also used outside it. 
Given this information you can safely move the section of code into a 
separate procedure or module, and use the report list in shared 
statements, or a parameter list to give your new procedure access to 
these variables. 

To select this type of report press Enter on the menu choice titled 
"List Objects External to a Range .. .". A dialog box will be displayed 
where you can enter the following information: 

The first two input elements are used to enter the beginning and 
ending line numbers to consider. Note that line numbers refers to 
physical line numbers, and not line numbers that are used as labels in 
your source code. To determine the line numbers while in the 
QuickBASIC editing environment, simply move the cursor to the top 
line of the range to consider, and note the first number shown on the 
bottom right comer of the screen. Then move the cursor to the last 
line to consider and note that line number as well. 

If you specified that line numbers be relative to procedures in the 
"Options" dialog box as QuickBASIC does, you should enter the name 
of the procedure that contains the range in the third input element. 
If the range is contained in the main module instead of a procedure, 
or you specified that line number be relative to the beginning of the 
file, you should instead enter the name of the module that contains 
the range. 

Page 32 



Don Malin's Cross Reference Program 

The remaining fields are check boxes where you can specify the types 
of objects to be reported. Also, be sure to see the Tips and Tricks 
section for more on this report type. 

OU1PUT OPTIONS 

The Output menu allows you to select the destination of reports. 
Reports can be sent to either a file or printer. To select an output 
destination, move the highlight bar to the desired item and press the 
space bar. This will toggle a check mark on or off. Note that only 
one destination can be selected at a time. To change options for a 
printer, press the Enter key to view and edit the associated dialog 
box. The menu options are as follows: 

SENDING REPORTS TO A FILE 

Selecting the first choice ("To File .. .") will send the report output to 
the file you specify, after pressing Enter on this choice. If you don't 
specify a file name, the reports will be written to a file with the same 
base name as your source file, but with the extension specified in the 
"Specify File Extensions" choice from the "File" menu. Any printer 
set-up codes or margin information from the "LPTI:" choice below will 
be sent to the output file. 

SENDING REPORTS TO A PRINTER 

"To Printer on LPTl ... • or "LPT2. .. " 

This choice specifies that report output be sent to the printer 
connected to printer port 1 (LPTI:). If you press the Enter key on 
this choice, a dialog box will be displayed allowing you to set various 
printer options as follows: 

Page 33 



Don Malin's Cross Reference Program 

PRINTER SETUP 

Page Width: 

This specifies the character width of the printer. If you have a wide 
carriage printer or are using compressed printing, you should set this 
to the maximum number of characters per line. Otherwise, stet this 
field to 80. 

Left Margin: 

Use this field to specify where printing should begin horizontally on 
the page. Entering 1 will cause printing to begin at the leftmost part 
of the page. 

Page Length: 

This option specifies the number of lines per page for your printer. 
Normally this should be set to 66, since standard letter paper uses this 
size. To suppress page breaks, enter 0. Note that this is the actual 
number of lines on the sheet of paper, and not the number of lines 
that will be printed on each page. 

Bottom Margin: 

The bottom margin specifies the number of lines to skip at the bottom 
of each page. The default is 6, but you can enter anything between 2 
and the page length set above. The page length minus the bottom 
margin is the number of lines that will be printed before a form feed 
is issued. Note that footers will be printed two lines below the 
bottom margin. 

Page 34 



Don Malin's CroBB Reference Program 

Printer Init. Code: 

This field is used to enter control characters that will be sent to the 
printer before the report begins. This makes it possible to set the 
printer into compressed or enhanced modes for reports. Low ASCII 
codes such as the Escape character may be entered by simply typing 
the ASCII number followed by a comma. Thus, you would enter 
"27, M" to send an Escape character followed by the letter M to the 
printer. If you had an Epson printer this would set enhanced (NLQ) 
printing mode. As supplied, this field will default to 15, which sets 
compressed printing on Epson compatible printers. 

Printer Reset Code: 

Enter your printer's reset code to restore the printer to its default 
condition after reports have been completed. 

Settings for LPTl: and LPT2: are saved separately so you can maintain 
both printers independently. 

Page 35 



Don Malin's Cross Reference Program 

SAVING AND RETRIEVING CONFIGURATION FILES 

"Save Settings to File ... • 

After you have specified all the file and reporting options such as file 
extensions, report types, and printer information, choose this item to 
save the information to a configuration file. When the program is 
next run, this file will be read automatically with the same settings in 
effect. 

You may also save and load multiple configuration files with different 
names. When "Save Settings to File .. ." is chosen from the "File" menu, 
you will be prompted for the naine the file is to be saved as. If you 
use the default name XREF.CFX, the program will always load this file 
when it starts. If this file is not found, XREF will look for this file in 
its own directory. This makes it possible to have different 
configuration files for different directories, or one file only. 

You can also save several configuration files under different names, 
which can be loaded using the "Retrieve Settings file .. ." choice from 
the "File" menu. 

"Retrieve Settings File ... • 

Use this choice to retrieve a previously saved configuration file. After 
selecting this, a dialog box will appear showing a list of configuration 
files to choose from. Simply highlight the one you want and press 
Enter. 

Page 36 



Don Malin's Cross Reference Program 

4. RUNNING REPORTS 

"Run" menu, "Start" 

Once you have selected a source file (BASIC source or Object 
Database) and one or more reports, select this menu item to start the 
reporting process. 

BROWSING REPORT FILES 

"Browse Report File. . ." 

Use this option to view (browse) a previously created report file. 
When this menu item is chosen, a dialog box will be displayed 
allowing you to select a file to view. This feature is intended for 
viewing report files generated by the program, though it will also 
work with any ASCII text file. After selecting a file from the file 
name dialog box, the contents of the file will be displayed. Use the 
cursor direction keys to move through the file. 

INVOKING A DOS SHELL 

"DOS Shell" 

This choice temporarily exits the program and invokes a DOS shell. 
Use this choice when you want to access DOS without leaving the 
program. When you are finished in DOS, type EXIT to return to 
XREF. 

LEA YING THE PROGRAM 

"Exit" 

This choice exits the cross reference program and returns to DOS. 

Page 37 



Don Malin's Cross Reference Program 

5. PROGRAM LIMITS 

XREF can keep track of a maximum of 2,425 distinct objects and 32,766 
total references. Depending on the amount of memory available to 
the program, these maximums may be less. If your source files have 
more of either maximum, the program will abandon the reports and 
display an error message. In this case you could remove one or more 
modules from the main program's .MAK file and run the report again. 

6. TIPS AND TRICKS 

Aside from the obvious uses for the various reports included with the 
package, there are some other interesting uses we have found while 
using XREF. The following are some useful tips and techniques that 
you can use to improve your programs. 

EXCLUDING THE FLOATING POINT LIBRARY 

With the introduction of Microsoft QuickBASIC 4.5 it is now possible 
to create programs that do not include the floating point math library 
if your program does not need it. This can result in a significant size 
reduction of between 3K and lOK While this is a great improvement 
over previous versions of BASIC, many programmers don't know that 
they are unnecessarily using keywords that automatically include this 
library. 

To check your program for keywords that bring in the floating point 
library, use the "Object Summary Report" to list all BASIC keywords 
as follows: 

Page 38 



Don Malln's Cross Reference Program 

After starting the XREF.EXE program, select "Open Source File" from 
the "File" menu, and then enter or highlight the name of your main 
module. Next, go to the "Report" menu and highlight the choice 
titled "Object Summary Table", and press Enter to view the associated 
dialog box. Check the first field titled "BASIC Key Words", and 
optionally un-check all the rest of the fields. Finally, press Enter to 
accept the settings. After selecting the report, choose a report 
destination from the Output menu, and start the reporting process. 

Once XREF has completed its work, you can examine the generated 
table. Each BASIC key word used in your program will be listed, 
along with the number of times it was used to its immediate right. 
Each key word that requires the floating point library will have an "f" 
character immediately to its left. Some keywords may also have a "p", 
indicating that it is not supported by Crescent Software's P.D.Q. 
library. Once you have identified all floating point keywords, you 
will need to find alternative methods or commands to replace them. 

A commonly used key word (operator) that requires floating point 
support is the caret (" ), which raises a numer to a power. Many 
programmers use this function to test or set bits within an integer or 
long integer variable, thus allowing one variable to represent many 
individual flags. The following is an example of this technique: 

Bit% = 3 'Use the 3rd bit 
Number& z Number& OR 2 • Bit% • Set the bit 
Number& • Number& AND (NOT 2 • Bitl) 'Clear the bit 
IF Number& AND 2 • Bit%) THEN 'Test the bit 

'it's set 
END IF 

Page 39 



Don Malin's Cross Reference Program 

While you might think that this would not require floating support 
since only integers are used, BASIC will actually convert the integers 
to floating point values, and call a floating point routine to do the 
math. The Power operation in these statements can and should be 
replaced with a function such as the one shown below. 

Bit% = 3 
Number&= Number& OR Power2&(BitX) 
Number& = Number& AND (NOT Power2&(Bi t%)) 
IF (Number& AND Power2&(BitX)) THEN 

'it's set 
END IF 

FUNCTION Power2& (Power%) STATIC 
TEMP& = 2 
FOR N = 2 TO Power% 

Temp& = Temp& • 2 
NEXT 
Power2& = Temp& 

END FUNCTION 

'Use the 3rd bit 
'Set the bit 
'Clear the bit 
'Test the bit 

The above example and function requires no floating point support, 
and will also be considerably faster. 

Another example of an unnecessary floating point operation is using 
the forward slash division operator (/) with integer variables. If your 
program uses this divide operator you should change it to the integer 
divide operator (\) instead if at all possible. 

Other BASIC statements that add the floating point library routines to 
your programs are PLAY, SOUND, LINE, and VAL. Besides the 
floating point routines, these statements are also relatively large, 
because they must be able to evaluate the entire range of floating 
point values. We provide a number of replacements for these in our 
QuickPak Professional product, solely to help you reduce the size of 
your programs. 

Page 40 



Don Malin'a Croaa Reference Program 

MOVING SECTIONS OF CODE INTO SUBPROGRAMS 
OR FUNCTIONS 

During the development of a program you may decide that a section 
of code could or should be made into a separate subprogram or 
function. For example, any collection of statements which is called 
more than once and that exceeds, say, twenty or more Jines of code is 
an ideal candidate for conversion to a subprogram or function. This 
lets you avoid duplicating similar sections of code. Another reason 
for creating subprograms is to hide the lower level details from the 
flow of the main program. This will improve the readability of your 
code, by Jetting you view the major tasks being performed, rather 
than being burdened with many individual details. Finally, if your 
programs are very large and the BC compiler itself is running out of 
memory, dividing your program into separate files will enable you to 
compile them individually, and link them together to create a final 
.EXE program. 

Notice that very small subroutines are often better implemented as 
GOSUB routines, because a certain amount of overhead is required for 
each separate subprogram or function. Also notice that BASIC PDS 
version 7 will place subprograms and functions into expanded 
memory (EMS), but only if they can be stored in 16K or Jess each. 
Therefore, if you are using BASIC 7 and find that you are frequently 
running out of memory in the QBX envimment, you should avoid 
creating many very large subprograms. 

One of the problems in moving a block of code into a separate 
subroutine is that the code may refer to global variables elsewhere in 
your program. And that's where XREF can help. By using the "List 
Objects External to a Range" feature, XREF will list all of the variables 
that are not contained within a specified range of Jines. The 
discussion below shows how to use this feature to successfully move 
a block of code into a subprogram or function. 

Page 41 



Don Malin's Cross Reference Program 

First identify the section you want to move to the new procedure. 
From within the QuickBASIC environment or your own editor, record 
the line number of the first line of the section. Next record the 
number of the last line in that section. (Be sure to remember the 
name of the procedure that the program fragment is in. If the section 
is contained in the main part of your program, the procedure name 
will be MAIN.) Start XREF and select the name of your program from 
the "Open Source File" menu choice. Next, move to the Report menu 
and press Enter on the "List Objects External to a Range" choice. 
Within the displayed dialog box, enter the line numbers you recorded 
earlier, along with the procedure name in the appropriate fields. Also 
select the types of objects to report. For the example we are working 
on, you should choose all object types except constants, since 
constants are shared automatically. It is also a good idea to leave 
"Labels" checked, since you may be using a GOTO or GOSUB to a 
section of code outside the range you are moving. 

After completing the dialog box, press the space bar on the menu 
choice to mark this report type as selected. Then choose a destination 
for the report from the Output menu. You may want to send the 
report to a file so that you can load it into QuickBASIC as a 
document, and cut and paste the list of objects between your program 
and the report. When all the options have been set, Choose "Start" 
from the Run menu to generate the report. 

The created report will list all of the variables that need to be shared 
with your new procedure, or passed as parameters. 



Don Malin's Cross Reference Program 

MOVING PROCEDURES BETWEEN MODULES 

It is often necessary to move procedures between modules when a 
module becomes too large to compile, or when you decide that it 
might be more appropriate to move it to another module containing 
similar or related procedures. In the QuickBASIC environment this 
can be done easily with the "Move" command in the "View - Subs" 
dialog box. The tricky part comes when your procedure shares data 
within the module it is being moved from. If the data is shared using 
a SHARED statement in the procedure, it is easy to see what needs to 
be done. However, if the data is global to the entire module, it is 
difficult to determine what variables are required by the procedure. 
Another problem arises when the procedure uses other procedures 
declared in its current module, but not in the destination module. 

The solution to the first problem is to either use COMMON in both 
modules to share the data, or include the shared variables in the 
procedure's parameter list Using COMMON is the easiest method, 
but it leads to interdependence between the modules. If the two 
modules are always used together and only by each other, this is fine. 
However, if you intend to use either module with other programs, 
you should try to keep it independent by avoiding common data. 

In order to find out what variables or DECLARE statements need to 
be passed or used in the new module, you should use the report 
titled "Table of Objects Used in Procedures". This report will list all 
objects (both variables and other procedures) used by all procedures 
in your program, including both passed and shared variables as well 
as internal variables. 

To generate this report, select the name of your main module from 
the "Open Source File" choice from the File menu, and then press 
Enter on the "Table of Objects Used in Procedures" choice of the 
Report menu. A dialog box will appear letting you indicate which 
object types are of interest to you. For the example above you should 
probably check all of the object types except BASIC keywords. After 
accepting the dialog box options, press the space bar to select this 
report type for processing. 

Page 43 



Don Malln's Cross Reference Program 

When all options are set, choose "Start" from the Run menu to 
generate the report. The created report will list all variables used 
within each procedure, along with an attribute for each such as the 
word "SHARED" or "Global". 

CONSERVJNG DATA SPACE BY REUSING VARIABLES 

Many programmers code a FOR/NEXT or WHILE;WEND loop using a 
variable name that is meaningful to the loop. For example, to read in 
a text file we've seen code like this: 

FOR TextLine - 1 TO NwnLines 
LINE INPUT #1, Work$ 
PRINT Work$ 

NEXT 

However, for each different integer variable that is used, two bytes 
are taken from available string memory. A much better approach is to 
use a temporary variable repeatedly, such as X or maybe I. If the 
same variable is always used, that much memory may be saved. This 
idea could even be extended to include subprograms and functions, 
by adding the following statement near the beginning of your main 
module: 

DIM SHARED X, Y, Temp 

Then, these variables can be used any time a FOR/NEXT counter is 
needed, or whenever a temporary scratch variable is needed. 

Another memory waster is static variables used in subprograms and 
functions. When a variable has not been declared as SHARED (or 
COMMON for that matter) and it is used in a subprogram, it is 
distinct from other variables with the same name in the main program 
or in other subprograms. While local variables is definitely a major 
feature of modem structured langauges, it is important to understand 
that each variable uses more memory. 

Page 44 



Don Malin's Cross Reference Program 

Therefore, we often recommend omitting the STATIC option in SUB 
and FUNCTION definitions when possible. When STATIC is not 
used, all of the variables within a given subprogram are stored on the 
PC's stack temporarily, and only while the subprogram is active. Of 
course, this has the side effect of losing whatever value a variable 
held between invocations. However, you may specify STA TIC for 
individual variables if necessary. 

ELIMINATING Lll\TE NUMBERS 

When your programs begin to approach the size and memory limits 
that the BC compiler can handle, it is good practice to remove any 
unnecessary line labels and line numbers. For each line that is 
labeled, BC must remember its position in the source file, to resolve 
GOTO and GOSUB statements that may reference it later in the 
program. Further, if you compile with the /d (debug) option, then all 
of the line numbers are added to the final .EXE program. XREF 
therefore includes the LINESOUT utility to remove all unused line 
numbers and labels. 

To remove unused line numbers and labels from a program, first use 
the XREF program to create an Object Database for that program. 
The generated Object Database will contain information about each 
line number and label in your program, including the number of 
references to each. This is needed by the LINESOUT utility. Once 
an Object Database exists for your program, you can use 
LINESOUT.COM to actually remove the numbers and labels from 
your source. To use LINESOUT, type the following from DOS: 

LINESOUT [filename[.odb)] 

Where "filename" is the name of the Object Database file created by 
XREF. The extension is optional and will default to ".ODB" if 
omitted. If you do not specify a file name, the program will prompt 
you for one. 

Page 45 



Don Malin's Cross Reference Program 

Once started, the program will read the Object Database and search 
for all unreferenced line numbers or labels while simultaneously 
reading the original BASIC source file. As lines of source are read, 
they will be written out to a temporary file with the extraneous labels 
removed. Once the entire source file has been read, the original 
source file will be renamed with a .BAK extension, and the new 
source will be written using the original file name. If a .BAK file 
already exists, you will be asked if you want to overwrite it. If your 
program uses more than one module, the next module will then be 
read until all of them have been processed. 

Notice that LINESOUT was designed as a separate utility, rather than 
including its function in the XRE_F program. This was done because 
removing line numbers is usually done only once, and the extra code 
would unnessarily burden the XREF program if it was included. Also 
notice that LINESOUT was written using our P.D.Q. library to 
achieve the very small file size. 

7. ABOUT THE PROGRAM'S SOURCE CODE 

RECOMPilJNG THE PROGRAM: 

There is little reason for you to recompile XREF, since there are very 
few things that could or should be customized. However, in the 
interest of completeness, the following discussion explains each of the 
various program modules, and how they have been compiled. 

XREF.EXE and all of its associated modules were compiled with the /o 
(stand alone) and /ah (array huge) switches to allow maximum 
memory usage for the large tables that are required. In addition, the 
source was compiled and linked with BASIC 7 to allow the use of 
overlays; again to save memory for the program. 

The XREF program's source code consists of several overlaid modules 
including the main module, several user interface modules, a 
parsing/analyzing module, and a reporting module. The various 
modules and their basic functions are listed below. 

Page 46 



Don Malin's Cross Reference Program 

XREF.BAS 

This is the main module, and it controls all aspects of the program's 
operation. The menu is set up and controlled from this module, as 
well as the control of the various dialog boxes, source reading, and 
reporting routines. Since the other modules are overlayed, some 
commonly used subroutines are also kept in this module, such as the 
printing and file name parsing routines. 

Keeping them in the main module eliminates the problem of having to 
constantly swap them in and out of memory (or disk) as they are 
used. 

PULLDNMS.BAS 

This module handles the actual operation of the pull-down menu 
system. Once the menus are set up by the main module, this module 
handles displaying the menus, and all menu movement within them. 
Note that the source code for this module is not included with XREF, 
but is part of our QuickPak Professional tool box. 

DIALOG.BAS 

This module handles the operation of all the dialog boxes used by the 
program. Once a dialog box has been set up by the main (or other 
calling) program, the display and action of all dialog boxes are 
handled by this module. 

GETFILE.BAS 

GETFILE sets up and manages the dialog box used to ~elect files 
names within the program. It also handles the error prompt dialog 
boxes. 

Page 47 



Don Malin's Cross Reference Program 

XREFDIALBAS 

This module sets up all the dialog boxes used in the program, except 
for the file selection and error prompt dialog boxes mentioned above. 

XREFMISC.BAS 

This module handles loading and saving object databases. 

QMAP.BAS 

The QMAP module is responsible for reading, parsing, and analyzing 
your source files. QMAP creates the tables of objects and their 
reference information that is used by all the reports. In addition, the 
source listing report is generated by this module. 

XREFRPT.BAS 

This module contains all the various reporting routines used by the 
program. 

The following $INCLUDE files are also required for some of the 
modules: 

DIALTYPE.BI 

This file contains a TYPE definition for use with the various dialog 
boxes. 

Page 48 



Don Malin's Cross Reference Program 

XREFfYPE.BI 

This file contains TYPE definitions for program control data, as well 
as for the tables of objects and references. 

XREFCOMN.BI 

XREFCOMN defines all of the COMMON arrays and data that are 
used throughout the XREF program. 

In addition to the above BASIC source modules, you will also need 
two libraries containing assembler routines used by the program. The 
XREFMISC.LIB library contains routines specific to the XRFF program, 
and PRO.LIB contains various general purpose routines PRO.LIB is 
not provided with this package, however it is included with our 
QuickPak Professional library. 

We have also provided response files for use with Microsoft's MAKE 
utility, to automate the compiling and linking process. XREF. is the 
MAKE description file for building the program, and XREF.RSP is the 
LINK response file used by MAKE when creating the final XREF.EXE 
program. You can examine these files to see what compiler switches 
are used for each module, as well as the various "NO", or stub files 
that are used. 

The XREF program was built with Microsoft BASIC 7 PDS compiler 
and linker in order to take advantage of its overlay capabilities, to 
maximize the amount of memory available to the program. If you do 
not have BASIC 7, you may use QuickBASIC versions 4.00b through 
BASIC 6. However, the resulting program will have less memory 
available to it, and thus a reduced object capacity. 

Page 49 



Don Malin's Cross Reference Program 

APPENDIX A 

PROBLEMS 

Problem: 

Incorrectly reporting file operations such as "CLOSE#I", "GET#I" etc. 
as variables, constants or line labels. 

Solution: 

There must be a space between the BASIC keyword and the pound 
sign. 

Example: 

"CLOSE#I" should be "CLOSE #1" 

Discussion: 

While the original syntax is valid for the BC compiler, we have 
chosen not to burden XREF with the extra logic required to handle 
this seldom used construct. If you use the QB.EXE or QBX.EXE 
editing environment for program development, this will never be a 
problem. 

Problem: 

Reporting variables listed in named common blocks as different 
variables. 

Solution: 

You are using different variable names in corresponding named 
common statements. Aliasing of variables between modules through 
named common blocks is not supported by the XREF program. You 
must use the same variable names across modules. 

Page 50 



Don Malin's Cro11 Reference Program 

ERROR NUMBERS 

It is possible that a fatal error may occur during the operation of the 
XREF program. If one occurs you will see a message of the form: 

Error ## occurred in module ... 

The following is a list of error numbers and their probable causes: 

Enor # Possible cause 

24 Your printer is not turned on or is off-line. 

27 Your printer is out of paper. 

61 The disk that output has been directed to is full. 

67 The program attempted to open more files than are 
available under the current "FILES=" statement in 
your CONFIG.SYS file. This usually occurs when 
your program uses nested Include files. 

68 You specified a printer that is not available on 
your system. 

70 The program attempted to write to a file that has 
been locked by another program or process. (This 
could occur on a network.) 

If you receive any error number other that those listed above, please 
note the circumstances under which the error occurred and call us. 

Notice that while fatal errors may occur and stop the program, no 
damage will be done to any of your source files. The XREF program 
never alters source files. 

Page 51 



Don Malin's Cross Reference Program 

ERROR MESSAGES 

The following is a list of program error messages that may occur 
during the operation of the XREF program: 

Can't find XREF.KEY 

XREF is unable to find the XREF.KEY file. This file contains 
information about all of BASIC's keywords, and it is necessary for the 
operation of the program. XREF.KEY must reside in the same drive 
and directory as the program file XREF.EXE. If you have DOS 3.0 or 
later, the program will be able to find this file no matter what 
directory you started the program from. If you have an earlier 
version of DOS, you will have to start the program from the same 
drive and directory in which you installed the program. 

Can't find configuration [filename]! 

The program could not find the specified configuration file. Either 
you mistyped it at the command line, or the file is not in the current 
drive and directory. 

Cannot process QuickBASIC Fast Load/Save files ... 

The program tried to open a BASIC source file that has been saved in 
the QuickBASIC "Fast Load/Save" format. The XREF program cannot 
process this type of file. Note the name of the module, and then save 
the source file in ASCII text format from QuickBASIC and try again. 

Page 52 



Don Malin's Cross Reference Program 

File not found 

The specified file could not be located. If you typed the file name 
manually, you may have misspelled it, or perhaps the path was 
incorrect. 

[filename] is not a compatible configuration file 

You tried to load a configuration file that is not compatible with 
XREF. Either the specified file is not a valid configuration file, or it 
was created by a previous version of XREF. If the configuration file 
name is XREF.CFX, then the program tried to load an incompatible 
version on startup. 

[filename] is not an Object Database! 

You tried to load a file that is not an XREF compatible Object 
Database. You may have mistyped the filename, or tried to load a file 
that has been corrupted. Either retype the file name, highlight the 
filename rather than type it, or open a BASIC source file instead. 

[filename] not found!" or "Can't find [filename]! 

If XREF was using a .MAK file to locate associated modules, the 
designated file may not exist or it may be in another directory or 
drive. You should edit the .MAK file to remove the nonexistent file, 
or change its path name to include the correct drive and directory. 

Page 53 



Don Malin's Cross Reference Program 

[procedure name I filename] is not used by File Name! 

The procedure name or module name specified in the "External to 
Range" dialog box does not exist, or it is not used by your program. 
You may have mistyped the name when you filled in the dialog box. 

$INCLUDE file [filename] not found! 

The program cannot find a file that was specified in your source file 
with an $INCLUDE metacommand. Edit the $INCLUDE statement to 
reflect the correct drive and directory, or update your DOS 
environment to include the directory where you keep $INCLUDE 
files. 

Insufficient EMS to load overlays 

If your system has expanded memory (EMS) but Jess than 64k is 
available, the program cannot operate. You will need to either 
allocate more expanded memory, or disable it entirely. This situation 
can occur when you are using a 386 operating system such as 
QuarterDeck's DesqView, but the virtual machine you are running has 
no expanded memory allocated to it. In this case the program will see 
the expanded memory, but will not be able to use it for overlays. Try 
allocating more memory, or run the program in another virtual 
machine. 

Not enough memory 

There was not enough free memory to allocate object information 
tables. You need to free up more conventional memory for the 
program. You may be able to do this by removing TSR programs and 
or device drivers from memory. 

Page 54 



Don Malin's Cross Reference Program 

Too many objects 

The program encountered more objects than it has memory for. If the 
total number of objects displayed on the bottom line of the screen is 
Jess than 2,425, you must make more memory available to XREF and 
try again. You may be able to do this by removing TSRs and/or 
device drivers from memory. If the maximum number of objects 
(2,425) has been reached, you must remove one or more module 
names from the source program's .MAK file and try again. You may 
then run XREF against the removed modules individually if needed. 

Too many references 

The program encountered more references to objects than it has 
memory to accommodate. If the total number of references displayed 
on the bottom line of the screen is less than 32,766, you should make 
more memory available to the program and try again. You may be 
able to do this by removing TSRs and/or device drivers from memory. 
If the maximum number of objects (32,766) has been reached, you will 
have to remove one or more module names from the source program's 
.MAK file and try again. 

Page 55 



Don Malin's Cross Reference Program 

APPENDIX B 

IMBEDDED METACOMMANDS 

Note that any changes to XREF's defaults made by imbedded 
metacommands will effect not only the source listing but also all of 
the remaining reports. 

'$LINESIZE 

Purpose: 

Syntax: 

Where: 

Comments: 

'$LIST 

Purpose: 

Syntax: 

Where: 

Comments: 

Tells XREF to change the maximum line width for the 
listing. 

'$LINESIZE: Number 

Number is the last column to print at before wrapping 
takes place. 

The '$LINESIZE metacommand must appear within the 
first two lines of your program if you want the entire 
listing to be the same width. If '$LINESIZE appears 
anywhere else in the program, it affects only the 
width of the remaining lines. 

Turns the listing of the source code on or off. 
I 

'$LIST+ or '$LIST- /. 

"+" turns the listing on, and "-" turns it off. I 

'$LIST is useful for getting partial listings of new or I 
modified code. Note that '$LIST+ will not turn a l 
listing on unless "Source Listing" was selected from 
the "Report" menu. 

Page 56 



'$PAGE 

Purpose: 

Syntax: 

Comments: 

'$PAGEIF 

Purpose: 

Syntax: 

Where: 

Don Malin's Cross Reference Program 

Forces a new page in the listing. 

'$PAGE 

The page is forced by inserting a form feed character 
(CHR$(12)) into the listing, followed by a heading for 
the new page. 

Skips to the next page if there are less than "n" 
printable lines left on the current page. 

'$PAGEIF: n 

"n" is the number of lines to skip for each page, and it 
must be in the range of I to the page size. XREF uses 
6 lines as its default. 

Page 57 



'$PAGESIZE 

Purpose: 

Syntax: 

Where: 

Comments: 

'$SKIP 

Purpose: 

Syntax: 

Where: 

Don Malin's Cross Reference Program 

Sets the number of physical lines per page in the 
source listing. 

'$PAGESIZE: n 

"n" is the number of lines that occupy a page in the 
listing. XREF's default is 66. Pages in a listing are 
separated by a form feed character (CHR$(12)) 
followed by a page heading. 

If "n" is 0, no form feeds or subsequent headings will 
be printed. The '$PAGESIZE metacommand must 
appear within the first page of your program if you 
want all the pages to be the same length. If it 
appears anywhere else, it will affect only the 
remaining pages. 

Skips "n" printable lines, or to the end of the page, 
whichever comes first. 

'$SKIP: n 

"n" is the number of lines to skip. Note that the last 
six lines, or the number set with '$PAGEIF are always 
skipped. 

Page 58 



'$SUBTITLE 

Purpose: 

Syntax: 

Where: 

Comments: 

'$TITLE 

Purpose: 

Syntax: 

Where: 

Comments: 

Don Malin's Cross Reference Program 

Sets a subtitle for listing page headings. 

'$SUBTITLE: 'Text' 

Text is the subtitle to be inserted. 

The specified text is printed to the right of the file 
name in all subsequent page headings. 

The '$SUBTITLE metacommand must appear within 
the first two lines of your program if you want all of 
the pages to have the same subtitle. If it appears 
anywhere else, it will affect only the remaining 
pages. 

Sets a title for listing page headings. 

'$TITLE: 'Text' 

Text is the title to be inserted. 

The specified text is printed on the left side of the 
first line of all subsequent page headings. 

The '$TITLE metacommand must appear within the 
first two lines of your program if you want all of the 
pages to have the same subtitle. If it appears 
anywhere else, it will affect only the remaining pages. 

Page 59 



Don Malln's Cross Reference Program 

APPENDIX C 

SOURCE TEXT EXTRACTING AND MERGING UTIUTIES 

Instructions for TEXTOUT.COM and TEXTIN.COM 

The two utilities TEXTOUT and TEXTIN can be used together to 
export, and then import, strings from and to a BASIC source file. This 
makes it possible to check the spelling of all quoted text and remarks 
in a program, or even to simplify translating to another language. 
The TEXTOUT program may also be used to create a file of program 
text that could be read by the program at run time, instead of keeping 
quoted strings in the source. 1}lis would save string space, since the 
strings would exist only in their variables, and not also in the quoted 
constants. (The statement (INPUT #1, X$] reads the string from disk 
and stores it in the string; [READ X$) makes a copy of the DATA 
string when it assigns it to X$. Therefore, the string is stored in 
memory twice.) To extract quoted strings, start TEXTOUT from the 
command line with the name of the source file as an argument as 
follows: 

TEXTOUT filename[.bas] [/c] 

The program will then read and process the specified file. The /c 
option specifies that remarks as well as quoted strings are to be 
extracted. Notice that the source file extension is optional, and when 
omitted will default to ".BAS". As the program encounters each 
quoted string, they will be written to a file with the same base name 
as the source file but with an extension of ".SPL". Also note that zero 
length strings ("") will not be written, nor will strings that contain 
only spaces. When the program has completed reading the source 
file, it will return to DOS. At this point you may edit the .SPL file, 
or run it through any spell checking program. 

Page 60 



Don Malin's Cross Reference Program 

CAUTION: If you intend to merge the .SPL file back into the source 
file, do not make any changes to the source file that would effect the 
sequence of lines, or alter the number or location of quoted strings. 
After the .SPL file has been edited, its text can be merged back into 
the source file using the TEXTIN utility. To do this, start the TEXTIN 
program from the command line with the name of the BASIC source 
file as an argument as follows: 

TEXTIN filename[.bas] 

The program will then read both the source file and the .SPL file, and 
replace all quoted strings (and remarks if /c was used when running 
TEXTOUT) from the source file with the strings from the .SPL file. If 
a remark follows a quoted string, its position will be retained if 
possible, regardless of the difference in lengths of the two strings. 
The modified source will be written to a file with the same base name 
as the original source file, but with an extension of ".TRN". After all 
the source has been read and written, the program returns to DOS. 

Page 61 







Crescent Software, Inc. 
32 Seventy Acres, West Redding, Ct 06896 

(203) 846-2500 


	0097
	0098
	0099
	0100
	0101
	0102
	0103
	0104
	0105
	0106
	0107
	0108
	0109
	0110
	0111
	0112
	0113
	0114
	0115
	0116
	0117
	0118
	0119
	0120
	0121
	0122
	0123
	0124
	0125
	0126
	0127
	0128
	0129
	0130
	0131
	0132
	0133
	0134
	0135
	0136
	0137
	0138
	0139
	0140
	0141
	0142
	0143
	0144
	0145
	0146
	0147
	0148
	0149
	0150
	0151
	0152
	0153
	0154
	0155
	0156
	0157
	0158
	0159
	0160
	0161
	0162
	0163
	0164
	0165
	0166

